3x^2-8x-185=0

Simple and best practice solution for 3x^2-8x-185=0 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 3x^2-8x-185=0 equation:


Simplifying
3x2 + -8x + -185 = 0

Reorder the terms:
-185 + -8x + 3x2 = 0

Solving
-185 + -8x + 3x2 = 0

Solving for variable 'x'.

Begin completing the square.  Divide all terms by
3 the coefficient of the squared term: 

Divide each side by '3'.
-61.66666667 + -2.666666667x + x2 = 0

Move the constant term to the right:

Add '61.66666667' to each side of the equation.
-61.66666667 + -2.666666667x + 61.66666667 + x2 = 0 + 61.66666667

Reorder the terms:
-61.66666667 + 61.66666667 + -2.666666667x + x2 = 0 + 61.66666667

Combine like terms: -61.66666667 + 61.66666667 = 0.00000000
0.00000000 + -2.666666667x + x2 = 0 + 61.66666667
-2.666666667x + x2 = 0 + 61.66666667

Combine like terms: 0 + 61.66666667 = 61.66666667
-2.666666667x + x2 = 61.66666667

The x term is -2.666666667x.  Take half its coefficient (-1.333333334).
Square it (1.777777780) and add it to both sides.

Add '1.777777780' to each side of the equation.
-2.666666667x + 1.777777780 + x2 = 61.66666667 + 1.777777780

Reorder the terms:
1.777777780 + -2.666666667x + x2 = 61.66666667 + 1.777777780

Combine like terms: 61.66666667 + 1.777777780 = 63.44444445
1.777777780 + -2.666666667x + x2 = 63.44444445

Factor a perfect square on the left side:
(x + -1.333333334)(x + -1.333333334) = 63.44444445

Calculate the square root of the right side: 7.965202097

Break this problem into two subproblems by setting 
(x + -1.333333334) equal to 7.965202097 and -7.965202097.

Subproblem 1

x + -1.333333334 = 7.965202097 Simplifying x + -1.333333334 = 7.965202097 Reorder the terms: -1.333333334 + x = 7.965202097 Solving -1.333333334 + x = 7.965202097 Solving for variable 'x'. Move all terms containing x to the left, all other terms to the right. Add '1.333333334' to each side of the equation. -1.333333334 + 1.333333334 + x = 7.965202097 + 1.333333334 Combine like terms: -1.333333334 + 1.333333334 = 0.000000000 0.000000000 + x = 7.965202097 + 1.333333334 x = 7.965202097 + 1.333333334 Combine like terms: 7.965202097 + 1.333333334 = 9.298535431 x = 9.298535431 Simplifying x = 9.298535431

Subproblem 2

x + -1.333333334 = -7.965202097 Simplifying x + -1.333333334 = -7.965202097 Reorder the terms: -1.333333334 + x = -7.965202097 Solving -1.333333334 + x = -7.965202097 Solving for variable 'x'. Move all terms containing x to the left, all other terms to the right. Add '1.333333334' to each side of the equation. -1.333333334 + 1.333333334 + x = -7.965202097 + 1.333333334 Combine like terms: -1.333333334 + 1.333333334 = 0.000000000 0.000000000 + x = -7.965202097 + 1.333333334 x = -7.965202097 + 1.333333334 Combine like terms: -7.965202097 + 1.333333334 = -6.631868763 x = -6.631868763 Simplifying x = -6.631868763

Solution

The solution to the problem is based on the solutions from the subproblems. x = {9.298535431, -6.631868763}

See similar equations:

| m/2-5=-9 | | 2x^2+3=3x^4-5 | | 18q-9q+2=12 | | 9(x+5)+5(x+5)=7x-7 | | X^2+37.5x-79=0 | | -5(t-9)-(t+6)=7 | | ab/5a | | X^2+37.5-79=0 | | .5(x-10)=17+6x | | C(p)=20p | | loge(5x+1)=6 | | (3x-1)(x-1)=(x+2)(3x-3) | | 6x^2-16x-370=0 | | 5h+3h=16 | | -5x+12=-12+10 | | 24+8x=14x | | 24+8x=14z | | 7f+2+4a= | | c-(-5)=32 | | 8x+6=-7x+24 | | 10(6x+10)=350 | | 2x^4-3x^3+x^2=0 | | 3t=7.8 | | 2n+-5n+-12n=15 | | m+(-6)=19 | | 960=272t-16t^2 | | -8a=k/8 | | -6t+4=-26 | | 4(8x-4)=250 | | 7(x+5)+2(x+5)=7x-7 | | 5+a+c= | | 5*a*c= |

Equations solver categories